\]
</section>
+ <section>
+ <section>
+ <h3>The Lorenz Equations</h3>
+
+ <div class="fragment">
+ \[\begin{aligned}
+ \dot{x} & = \sigma(y-x) \\
+ \dot{y} & = \rho x - y - xz \\
+ \dot{z} & = -\beta z + xy
+ \end{aligned} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The Cauchy-Schwarz Inequality</h3>
+
+ <div class="fragment">
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Cross Product Formula</h3>
+
+ <div class="fragment">
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} & \mathbf{j} & \mathbf{k} \\
+ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
+ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
+ \end{vmatrix} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
+
+ <div class="fragment">
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+ </div>
+ </section>
+
+ <section>
+ <h3>An Identity of Ramanujan</h3>
+
+ <div class="fragment">
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+ </div>
+ </section>
+
+ <section>
+ <h3>A Rogers-Ramanujan Identity</h3>
+
+ <div class="fragment">
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+ </div>
+ </section>
+
+ <section>
+ <h3>Maxwell’s Equations</h3>
+
+ <div class="fragment">
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+ </div>
+ </section>
+ </section>
+
</div>
</div>
<script>
Reveal.initialize({
+ history: true,
transition: 'linear',
math: {
+ // host: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
mode: 'TeX-AMS_HTML-full'
},
var loaded = false;
var config = Reveal.getConfig().math || {};
+ config.host = config.host || 'http://cdn.mathjax.org/mathjax/latest/MathJax.js';
config.mode = config.mode || 'TeX-AMS_HTML-full';
- var head = document.querySelector( 'head' );
- var script = document.createElement( 'script' );
- script.type = 'text/javascript';
- script.src = 'http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=' + config.mode;
-
- // Detect when the script has loaded
- script.onload = onScriptLoad;
-
- // IE
- script.onreadystatechange = function() {
- if ( this.readyState === 'loaded' ) {
- onScriptLoad.call();
- }
- }
-
- // Normal browsers
- head.appendChild( script );
-
- function onScriptLoad() {
+ loadScript( config.host + '?config=' + config.mode, function() {
// Conditioned just in case both onload and readystate fire
if( loaded === false ) {
// This will only typeset equations that have not yet been
// processed, as well as equations that have change since
// last being processed.
- MathJax.Hub.Update( event.currentSlide );
+ MathJax.Hub.Update( event.currentSlide, function() {
+ Reveal.layout();
+ } );
} );
}
+ } );
+
+ function loadScript( url, callback ) {
+
+ var head = document.querySelector( 'head' );
+ var script = document.createElement( 'script' );
+ script.type = 'text/javascript';
+ script.src = url;
+
+ // Wrapper for callback to make sure it only fires once
+ var finish = function() {
+ if( typeof callback === 'function' ) {
+ callback.call();
+ callback = null;
+ }
+ }
+
+ script.onload = finish;
+
+ // IE
+ script.onreadystatechange = function() {
+ if ( this.readyState === 'loaded' ) {
+ finish.call();
+ }
+ }
+
+ // Normal browsers
+ head.appendChild( script );
+
}
})();