root.bib: Add livadaru03 and burnham03 and mark typos
authorW. Trevor King <wking@tremily.us>
Wed, 8 May 2013 01:34:12 +0000 (21:34 -0400)
committerW. Trevor King <wking@tremily.us>
Wed, 8 May 2013 01:34:12 +0000 (21:34 -0400)
Typos in equations listed in bechhoefer02, schlierf06, livadaru03, and
puchner08.  I have contacted the listed author in each case, but so
far there are no published errata :(.  To be fair, I only emailed
Bechhoefer a few hours ago ;).

Excerpts from the relevant emails:

On Tue, Apr 08, 2008 at 07:16:34PM -0400, W. Trevor King wrote:
> ...
> > My double integral is exploding, so I was double checking your formulas.
> I believe you swapped signs in the exponent in your Kramers' rate equation.
>
> It should be
>  k^-1 = 1/D \int_{x_-}^{x_+} e^{  \beta U(x)} [ \int_{0}^{x} e^{- \beta U(x')} dx' ] dx
> not
>  k^-1 = 1/D \int_{x_-}^{x_+} e^{- \beta U(x)} [ \int_{0}^{x} e^{  \beta U(x')} dx' ] dx
>
> See, for example, H\"anggi et al., Rev. Mod. Phys 1990,
>   http://prola.aps.org/abstract/RMP/v62/i2/p251_1
> Equation 4.56b,
> or Socci et al., J Chem Phy 1996
>   http://arxiv.org/pdf/cond-mat/9601091
> Equation 2.

On Wed, Apr 09, 2008 at 09:03:02AM +0200, Michael Schlierf wrote:
> For your second email: So far I am pretty sure about our published
> solution as it worked out. So have you double checked your integral
> borders? Try Kramers first in a simple potential, like a cusp-like or
> flat one. For those some analytical solutions are known and you could
> compare.

On Fri, Sep 07, 2012 at 07:09:17AM -0400, W. Trevor King wrote:
> On Fri, Sep 07, 2012 at 09:28:41AM +0200, Roland Netz wrote:
> > sorry for the confusion: Yes, the formula Eq 46 contains typos, as
> > you correctly point out.
>
> Ah.  Some sort of heads-up on the article page would be useful,
> because at least Puchner [1] quotes the typo-containing version.

On Wed, Sep 12, 2012 at 01:37:23AM +0000, Puchner, Georg Elias Michael wrote:
> thanks for pointing this out, I wasn't aware of this typo and also
> think they should have published and erratum.
>
> I dug into my old data and code (I am not doing force spectroscopy
> andy more since some years) and implemented your corrected
> version. I attached a comparison of my old transformation equation
> (black line with the parameters γ=22° and b=0.4 nm as published) and
> the fixed equation (dashed red line with γ=41° and b=0.11 nm)
>
> As you see, the quality is only slightly increased for some peaks
> but the parameters now make more sense...

On Tue, May 07, 2013 at 07:05:31PM -0400, W. Trevor King wrote:
> I'm citing your thermal spring constant calculation [1] in my thesis
> [2] to confirm my derivation of the overdamped power spectral density
> of a harmonic oscillator.  I was just double-checking my PSD (at the
> end of section 5.2.1 “Highly damped case”, currently around page 48)
> against your equation A12:
>
>   x²(ω) = (2kBTγ) / [k²(1+ω²τ₀²)]       (A12)
>
> It looks like you're missing a factor of 1/π...

src/root.bib

index 187121b2e36d650474f427844bc37ab14703c50f..c87d9b01af1bc359b5826cddccdb07e6ea30725a 100644 (file)
 @string{ABulhassan = "Bulhassan, Ahmed"}
 @string{BBullard = "Bullard, Belinda"}
 @string{RBunk = "Bunk, Richard"}
+@string{NABurnham = "Burnham, N.~A."}
 @string{DBusam = "Busam, D."}
 @string{GBussi = "Bussi, Giovanni"}
 @string{CBustamante = "Bustamante, Carlos"}
 @string{HCChen = "Chen, H. C."}
 @string{LChen = "Chen, L."}
 @string{XNChen = "Chen, X. N."}
-@string{XChen = "Chen, Xuming"}
+@string{XiChen = "Chen, Xinyong"}
+@string{XuChen = "Chen, Xuming"}
 @string{JFCheng = "Cheng, J. F."}
 @string{MLCheng = "Cheng, M. L."}
 @string{VGCheung = "Cheung, V. G."}
 @string{FDahlquist = "Dahlquist, Frederick W."}
 @string{SDanaher = "Danaher, S."}
 @string{LDavenport = "Davenport, L."}
+@string{MCDavies = "Davies, M.~C."}
 @string{MDavis = "Davis, Matt"}
 @string{SDecatur = "Decatur, Sean M."}
 @string{WDeGrado = "DeGrado, William F."}
 @string{SHladun = "Hladun, S."}
 @string{WKHo = "Ho, W.~K."}
 @string{RHochstrasser = "Hochstrasser, Robin M."}
+@string{CSHodges = "Hodges, C.~S."}
 @string{CHoff = "Hoff, C."}
 @string{WHoff = "Hoff, Wouter D."}
 @string{JLHolden = "Holden, J. L."}
 @string{WLiu = "Liu, W."}
 @string{XLiu = "Liu, X."}
 @string{YLiu = "Liu, Yichun"}
+@string{LLivadaru = "Livadaru, L."}
 @string{YSLo = "Lo, Yu-Shiu"}
 @string{GLois = "Lois, Gregg"}
 @string{JLopez = "Lopez, J."}
 @string{MMartin = "Martin, M. J."}
 @string{YMartin = "Martin, Y."}
 @string{HMassa = "Massa, H."}
+@string{GAMatei = "Matei, G.~A."}
 @string{DMaterassi = "Materassi, Donatello"}
 @string{JMathe = "Math\'e, J\'er\^ome"}
 @string{AMatouschek = "Matouschek, Andreas"}
 @string{MNeitzert = "Neitzert, Marcus"}
 @string{CNelson = "Nelson, C."}
 @string{KNelson = "Nelson, K."}
+@string{RRNetz = "Netz, R.~R."}
 @string{NEURON = "Neuron"}
 @string{RNevo = "Nevo, Reinat"}
 @string{NJP = "New Journal of Physics"}
 @string{MRief = "Rief, Matthias"}
 @string{KRitchie = "Ritchie, K."}
 @string{MRobbins = "Robbins, Mark O."}
+@string{CJRoberts = "Roberts, C.~J."}
 @string{RJRoberts = "Roberts, R. J."}
 @string{RRobertson = "Robertson, Ragan B."}
 @string{HRoder = "Roder, Heinrich"}
 @string{BNTaylor = "Taylor, Barry N."}
 @string{THEMath = "Technische Hogeschool Eindhoven, Nederland,
   Onderafdeling der Wiskunde"}
+@string{SJBTendler = "Tendler, S.~J.~B."}
 @string{STeukolsky = "Teukolsky, S."}
 @string{CJ = "The Computer Journal"}
 @string{JCP = "The Journal of Chemical Physics"}
 @string{PDThomas = "Thomas, P. D."}
 @string{RThomas = "Thomas, R."}
 @string{JThompson = "Thompson, J. B."}
+@string{EJThoreson = "Thoreson, E.~J."}
 @string{SThornton = "Thornton, S."}
 @string{RWTillmann = "Tillmann, R.~W."}
 @string{NNTint = "Tint, N. N."}
     url = "http://link.aip.org/link/?AJP/70/393/1",
     keywords = "student experiments; safety; radiation pressure; laser beam
         applications",
-    note = "Good discussion of the effect of correlation time on calibration.
-        Excellent detail on power spectrum derivation and thermal noise for
-        extremely overdamped oscillators in Appendix A (references
-        \citet{rief65}). References work on deconvolving thermal noise from
-        other noise\citep{cowan98}",
+    note = {Good discussion of the effect of correlation time on
+      calibration.  Excellent detail on power spectrum derivation and
+      thermal noise for extremely overdamped oscillators in Appendix A
+      (references \citet{rief65}), except that their equation A12 is
+      missing a factor of $1/\pi$.  References work on deconvolving
+      thermal noise from other noise\citep{cowan98}.},
     project = "Cantilever Calibration"
 }
 
     project = "Cantilever Calibration"
 }
 
+@article{ burnham03,
+  author = NABurnham #" and "# XiChen #" and "# CSHodges #" and "#
+    GAMatei #" and "# EJThoreson #" and "# CJRoberts #" and "#
+    MCDavies #" and "# SJBTendler,
+  title = {Comparison of calibration methods for atomic-force
+    microscopy cantilevers},
+  year = 2003,
+  month = jan,
+  journal = NT,
+  volume= 14,
+  number = 1,
+  pages = {1--6},
+  url = {http://stacks.iop.org/0957-4484/14/i=1/a=301},
+  abstract = {The scientific community needs a rapid and reliable way
+    of accurately determining the stiffness of atomic-force microscopy
+    cantilevers. We have compared the experimentally determined values
+    of stiffness for ten cantilever probes using four different
+    methods. For rectangular silicon cantilever beams of well defined
+    geometry, the approaches all yield values within 17\% of the
+    manufacturer's nominal stiffness. One of the methods is new, based
+    on the acquisition and analysis of thermal distribution functions
+    of the oscillator's amplitude fluctuations. We evaluate this
+    method in comparison to the three others and recommend it for its
+    ease of use and broad applicability.},
+  note = {Contains both the overdamped (Eq.~6) and general (Eq.~8)
+    power spectral densities used in thermal cantilever calibration,
+    but punts to textbooks for the derivation.},
+}
+
 @article { forde02,
     author = NRForde #" and "# DIzhaky #" and "# GRWoodcock #" and "# GJLWuite
         #" and "# CBustamante,
         force spectroscopy data and for novel automated screening techniques is
         shown with bacteriorhodopsin and with protein constructs containing GFP
         and titin kinase.",
-    note = "Contour length space and barrier position fingerprinting.",
+  note = {Contour length space and barrier position fingerprinting.
+    There are errors in Eq.~(3), propagated from \citet{livadaru03}.
+    I contacted Elias Puchner and pointed out the typos, and he
+    revised his FRC fit parameters from $\gamma=22\dg$ and
+    $b=0.4\U{nm}$ to $\gamma=41\dg$ and $b=0.11\U{nm}$.  The combined
+    effect on Fig.~(3) of fixing the equation typos and adjusting the
+    fit parameters was small, so their conclusions are still sound.},
 }
 
 @article { raible04,
         resolved details of the unfolding energy landscape from mechanical
         single-molecule protein unfolding experiments requires models that go
         beyond the Bell model.",
-    note = "The inspiration behind my sawtooth simulation. Bell model fit to
-        $f_{unfold}(v)$, but Kramers model fit to unfolding distribution for a
-        given $v$. Eqn.~3 in the supplement is \citet{evans99} 1999's Eqn.~2,
-        but it is just ``[dying percent] * [surviving population] = [deaths]''
-        (TODO, check). $\nu \equiv k$ is the force/time-dependent off rate...
-        (TODO) The Kramers' rate equation (second equation in the paper) is
-        \citet{hanggi90} Eq.~4.56b (page 275). It is important to extract $k_0$
-        and $\Delta x$ using every available method."
+  note = {The inspiration behind my sawtooth simulation.  Bell model
+    fit to $f_{unfold}(v)$, but Kramers model fit to unfolding
+    distribution for a given $v$.  Eqn.~3 in the supplement is
+    \citet{evans99} 1999's Eqn.~2, but it is just
+    $[\text{dying percent}] \cdot [\text{surviving population}]
+       = [\text{deaths}]$.
+    $\nu \equiv k$ is the force/time-dependent off rate.  The Kramers'
+    rate equation (on page L34, the second equation in the paper) is
+    \citet{hanggi90} Eq.~4.56b (page 275) and \citet{socci96} Eq.~2,
+    but \citet{schlierf06} gets the minus sign wrong in the exponent.
+    $U_F(x=0)\gg 0$ and $U_F(x_\text{max})\ll 0$ (\cf~Schlierf's
+    Fig.~1).  Schlierf's integral (as written) contains
+    $\exp{-U_F(x_\text{max})}\cdot\exp{U_F(0)}$, which is huge, when
+    it should contain $\exp{U_F(x_\text{max})}\cdot\exp{-U_F(0)}$,
+    which is tiny.  For more details and a picture of the peak that
+    forms the bulk of the integrand, see
+    \cref{eq:kramers,fig:kramers:integrand}.  I pointed out this
+    problem to Michael Schlierf, but he was unconvinced.},
 }
 
 @article { schwaiger04,
 }
 
 @article { lli06,
-  author =       LiLi #" and "# YYang #" and "# GYang #" and "# XChen
+  author =       LiLi #" and "# YYang #" and "# GYang #" and "# XuChen
                  #" and "# BHsiao #" and "# BChu #" and "#
                  JSpanier #" and "# CYLi,
   title =        "Patterning polyethylene oligomers on carbon nanotubes
     are given. The reporting of the uncertainties of final results is
     discussed.},
 }
+
+@article{ livadaru03,
+  author = LLivadaru #" and "# RRNetz #" and "# HJKreuzer,
+  title = {Stretching Response of Discrete Semiflexible Polymers},
+  year = 2003,
+  month = apr,
+  day = 25,
+  journal = Macromol,
+  volume = 36,
+  number = 10,
+  pages = {3732--3744},
+  doi = {10.1021/ma020751g},
+  URL = {http://pubs.acs.org/doi/abs/10.1021/ma020751g},
+  eprint = {http://pubs.acs.org/doi/pdf/10.1021/ma020751g},
+  abstract = {We demonstrate that semiflexible polymer chains
+    (characterized by a persistence length $l$) made up of discrete
+    segments or bonds of length $b$ show at large stretching forces a
+    crossover from the standard wormlike chain (WLC) behavior to a
+    discrete-chain (DC) behavior. In the DC regime, the stretching
+    response is independent of the persistence length and shows a
+    different force dependence than in the WLC regime. We perform
+    extensive transfer-matrix calculations for the force-response of a
+    freely rotating chain (FRC) model as a function of varying bond
+    angle $\gamma$ (and thus varying persistence length) and chain
+    length. The FRC model is a first step toward the understanding of
+    the stretching behavior of synthetic polymers, denatured proteins,
+    and single-stranded DNA under large tensile forces. We also
+    present scaling results for the force response of the elastically
+    jointed chain (EJC) model, that is, a chain made up of freely
+    jointed bonds that are connected by joints with some bending
+    stiffness; this is the discretized version of the continuum WLC
+    model. The EJC model might be applicable to stiff biopolymers such
+    as double-stranded DNA or Actin. Both models show a similar
+    crossover from the WLC to the DC behavior, which occurs at a force
+    $f/k_BT\sim l/b^2$ and is thus (for polymers with a moderately
+    large persistence length) in the piconewton range probed in many
+    AFM experiments. We also give a heuristic simple function for the
+    force--distance relation of a FRC, valid in the global force
+    range, which can be used to fit experimental data. Our findings
+    might help to resolve the discrepancies encountered when trying to
+    fit experimental data for the stretching response of polymers in a
+    broad force range with a single effective persistence length.},
+  note = {There are two typos in Eq.~(46).  \citet{livadaru03} have
+    \begin{equation}
+      \frac{R_z}{L} = \begin{cases}
+          \frac{fa}{3k_BT}  &  \frac{fb}{k_BT} < \frac{b}{l} \\
+          1 - \p({\frac{fl}{4k_BT}})^{-0.5}
+            &  \frac{b}{l} < \frac{fb}{k_BT} < \frac{l}{b} \\
+          1 - \p({\frac{fb}{ck_BT}})^{-1}  &  \frac{1}{b} < \frac{fb}{k_BT} \;,
+        \end{cases}
+    \end{equation}
+    but the correct formula is
+    \begin{equation}
+      \frac{R_z}{L} = \begin{cases}
+          \frac{fa}{3k_BT}  &  \frac{fb}{k_BT} < \frac{b}{l} \\
+          1 - \p({\frac{4fl}{k_BT}})^{-0.5}
+            &  \frac{b}{l} < \frac{fb}{k_BT} < \frac{l}{b} \\
+          1 - \p({\frac{cfb}{k_BT}})^{-1}  &  \frac{1}{b} < \frac{fb}{k_BT} \;,
+        \end{cases}
+    \end{equation}
+    with both the $4$ and the $c$ moved into their respective
+    numerators.  I pointed these errors out to Roland Netz in 2012,
+    along with the fact that even with the corrected formula there is
+    a discontinuity between the low- and moderate-force regimes.  Netz
+    confirmed the errors, and pointed out that the discontinuity is
+    because Eq.~(46) only accounts for the scaling (without
+    prefactors).  Unfortunately, there does not seem to be a published
+    erratum pointing out the error and at least \citet{puchner08} have
+    quoted the incorrect form.},
+}