>>> a = Tree(); a.n = "a"
>>> a.append(c)
>>> a.append(b)
-
+
>>> a.branch_len()
5
>>> a.sort(key=lambda node : -node.branch_len())
>>> a.sort(key=lambda node : node.branch_len())
>>> "".join([node.n for node in a.traverse()])
'abdgcefhi'
- >>> "".join([node.n for node in a.traverse(depthFirst=False)])
+ >>> "".join([node.n for node in a.traverse(depth_first=False)])
'abcdefghi'
>>> for depth,node in a.thread():
... print "%*s" % (2*depth+1, node.n)
for child in self:
child.sort(*args, **kwargs)
- def traverse(self, depthFirst=True):
+ def traverse(self, depth_first=True):
"""
Note: you might want to sort() your tree first.
"""
- if depthFirst == True:
+ if depth_first == True:
yield self
for child in self:
for descendant in child.traverse():
When flatten==False, the depth of any node is one greater than
the depth of its parent. That way the inheritance is
explicit, but you can end up with highly indented threads.
-
+
When flatten==True, the depth of any node is only greater than
the depth of its parent when there is a branch, and the node
is not the last child. This can lead to ancestry ambiguity,
stack = [] # ancestry of the current node
if flatten == True:
depthDict = {}
-
- for node in self.traverse(depthFirst=True):
+
+ for node in self.traverse(depth_first=True):
while len(stack) > 0 \
and id(node) not in [id(c) for c in stack[-1]]:
stack.pop(-1)