while the contribution from the $y$-aligned wire will be along
$\ihat$. The total magnetic field is
\begin{align}
- \vect{B}_P
+ \vect{B}_Q
&= \frac{\mu_0 I_x}{2\pi r} \cdot (-\jhat)
+ \frac{\mu_0 I_y}{2\pi r}\ihat
= \frac{\mu_0}{2\pi r}\cdot(I_y\ihat-I_x\jhat)
= (2.00\ihat - 3.33\jhat)\U{$\mu$T} \\
- |\vect{B}_P| &= \sqrt{2.00^2 + (-3.33)^2}\U{$\mu$T}
+ |\vect{B}_Q| &= \sqrt{2.00^2 + (-3.33)^2}\U{$\mu$T}
= \ans{3.89\U{$\mu$T}} \\
- \theta_P &= \arctan\p({\frac{-3.33}{2.00}})
+ \theta_Q &= \arctan\p({\frac{-3.33}{2.00}})
= \ans{-59.0\dg} \;.
\end{align}
\end{solution}