--- /dev/null
+import Circ;
+import ElectroMag;
+import Mechanics;
+
+real u = 0.75cm;
+real w = 1.75u;
+real wo = 0.75u;
+
+MultiTerminal bat = source(dir=180, type=DC);
+
+Block hot = Block(
+ center=bat.center + (0, 1.3u), width=4u, height=u, fill=red, L="heat sink");
+Block h_in = Block(center=hot.center + (-u, 0.75u), width=w, height=u/2);
+Block h_out = Block(center=hot.center + (u, 0.75u), width=w, height=u/2);
+Block n = Block(center=h_in.center + (0, 1.25u), width=w, height=2u,
+ fill=opacity(0.25)+blue, L=Label("n", align=E));
+Block p = Block(center=h_out.center + (0, 1.25u), width=w, height=2u,
+ fill=opacity(0.25)+red, L=Label("p", align=W));
+Block bridge = Block(
+ center=hot.center + (0, 3u), width=3.75u, height=u/2);
+Block cold = Block(
+ center=hot.center + (0, 3.75u), width=3.75u, height=u,
+ fill=blue, L="cooled");
+
+MultiTerminal cur = current(draw=false);
+cur.centerto(bridge.center + (-1, 0), bridge.center + (1, 0));
+
+Charge electron = nCharge(n.center + (-0.3u, 0), "-");
+Vector v_e = Velocity(center=electron.center(), dir=-90);
+
+Charge hole = pCharge(p.center + (0.3u, 0), "+");
+Vector v_h = Velocity(center=hole.center(), dir=-90);
+
+wire(bat.terminal[1], h_in.center + (-h_in.width/2, 0), type=rlsq, dist=-2u);
+wire(bat.terminal[0], h_out.center + (h_out.width/2, 0), type=rlsq, dist=2u);
+hot.draw();
+h_in.draw();
+h_out.draw();
+n.draw();
+p.draw();
+bridge.draw();
+cold.draw();
+cur.draw();
+
+v_e.draw();
+electron.draw();
+v_h.draw();
+hole.draw();
The controller monitors the fluid cell temperature with a
thermocouple, and reading temperatures from the controller is fairly
straightforward (\cref{fig:unfold-protein:unfolder}). Temperature
-control is via a peltier mounted underneath the sample surface
+control is via a Peltier device mounted underneath the sample surface
(\cref{fig:peltier}).
\begin{figure}
\begin{center}
- % TODO: peltier image
+ \asyinclude{figures/schematic/peltier}
+ \caption{A Peltier functions by applying a voltage to regions of
+ p- and n-type semiconductor in series. Conduction in n-type
+ semiconductors is mainly through thermally excited electrons and
+ in p-type semiconductors is mainly through thermally excited
+ holes. Applying a positive voltage as shown in this figure
+ cools the sample by constantly pumping hot conductors in both
+ semiconductors towards heat sink, which radiates the heat into
+ the environment. Reversing the applied voltage heats the
+ surface.\label{fig:peltier}}
\end{center}
- \caption{TODO.\label{fig:peltier}}
\end{figure}
The controller tries to keep the measured temperature at the setpoint