}
@Misc{wikipedia-wiener-khinchin,
- title = "{W}iener-{K}hinchin theorem",
+ title = "{W}iener--{K}hinchin theorem",
publisher = "Wikipedia",
url = "http://en.wikipedia.org/wiki/Wiener\%E2\%80\%93Khinchin_theorem",
day = "TODO",
\nomenclature{$\abs{z}$}{Absolute value (or magnitude) of $z$. For
complex $z$, $\abs{z}\equiv\sqrt{z\conj{z}}$.}
-We also use the Wiener-Khinchin theorem,
+We also use the Wiener--Khinchin theorem,
which relates the two sided power spectral density $S_{xx}(\omega)$
to the autocorrelation function $r_{xx}(t)$ via
\begin{align}
S_{xx}(\omega) &= \Four{ r_{xx}(t) } \;,
- &\text{(Wiener-Khinchin)\citep{wiener-khinchin}} \label{eq:wiener_khinchin}
+ &\text{(Wiener--Khinchin)\citep{wiener-khinchin}}
+ \label{eq:wiener_khinchin}
\end{align}
\index{Wiener-Khinchin theorem}
where $r_{xx}(t)$ is defined in terms of the expectation value
\end{equation}
\index{PSD@\PSD}
-Because thermal noise is white (not autocorrelated + Wiener-Khinchin
+Because thermal noise is white (not autocorrelated + Wiener--Khinchin
Theorem), we can write the one sided thermal power spectral density
per unit time as
\begin{equation}