--- /dev/null
+#!/usr/bin/python
+
+"""
+Define some FFT wrappers to reduce clutter.
+Provides a unitary discrete FFT and a windowed version.
+Based on numpy.fft.rfft.
+
+Main entry functions:
+ unitary_rfft(data, freq=1.0)
+ power_spectrum(data, freq=1.0)
+ unitary_power_spectrum(data, freq=1.0)
+ avg_power_spectrum(data, freq=1.0, chunk_size=2048, overlap=True, window=window_hann)
+ unitary_avg_power_spectrum(data, freq=1.0, chunk_size=2048, overlap=True, window=window_hann)
+"""
+
+from numpy import log2, floor, round, ceil, abs, pi, exp, cos, sin, sqrt, \
+ sinc, arctan2, array, ones, arange, linspace, zeros, \
+ uint16, float, concatenate, fromfile, argmax, complex
+from numpy.fft import rfft
+
+
+# print time- and freq- space plots of the test transforms if True
+TEST_PLOTS = False
+#TEST_PLOTS = True
+
+def floor_pow_of_two(num) :
+ "Round num down to the closest exact a power of two."
+ lnum = log2(num)
+ if int(lnum) != lnum :
+ num = 2**floor(lnum)
+ return num
+
+def round_pow_of_two(num) :
+ "Round num to the closest exact a power of two on a log scale."
+ lnum = log2(num)
+ if int(lnum) != lnum :
+ num = 2**round(lnum)
+ return num
+
+def ceil_pow_of_two(num) :
+ "Round num up to the closest exact a power of two."
+ lnum = log2(num)
+ if int(lnum) != lnum :
+ num = 2**ceil(lnum)
+ return num
+
+def _test_rfft(xs, Xs) :
+ print "Test numpy rfft definition"
+ # Numpy's FFT algoritm returns
+ # n-1
+ # X[k] = SUM x[m] exp (-j 2pi km /n)
+ # m=0
+ # (see http://www.tramy.us/numpybook.pdf)
+ j = complex(0,1)
+ n = len(xs)
+ Xa = []
+ for k in range(len(Xs)) :
+ Xa.append(sum([x*exp(-j*2*pi*k*m/n) for x,m in zip(xs,range(n))]))
+ assert (Xs[k]-Xa[k])/abs(Xa[k]) < 1e-6, \
+ "rfft mismatch on element %d: %g != %g, relative error %g" \
+ % (k, Xs[k], Xa[k], (Xs[k]-Xa[k])/abs(Xa[k]))
+ # Which should satisfy the discrete form of Parseval's theorem
+ # n-1 n-1
+ # SUM |x_m|^2 = 1/n SUM |X_k|^2.
+ # m=0 k=0
+ timeSum = sum([abs(x)**2 for x in xs])
+ freqSum = sum([abs(X)**2 for X in Xa])
+ assert abs(freqSum/float(n) - timeSum)/timeSum < 1e-6, \
+ "Mismatch on Parseval's, %g != 1/%d * %g" % (timeSum, n, freqSum)
+
+def _test_rfft_suite() :
+ xs = [1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
+ _test_rfft(xs, rfft(xs))
+
+def unitary_rfft(data, freq=1.0) :
+ """
+ Compute the Fourier transform of real data.
+ Unitary (preserves power [Parseval's theorem]).
+
+ If the units on your data are Volts,
+ and your sampling frequency is in Hz,
+ then freq_axis will be in Hz,
+ and trans will be in Volts.
+ """
+ nsamps = floor_pow_of_two(len(data))
+ # Which should satisfy the discrete form of Parseval's theorem
+ # n-1 n-1
+ # SUM |x_m|^2 = 1/n SUM |X_k|^2.
+ # m=0 k=0
+ # However, we want our FFT to satisfy the continuous Parseval eqn
+ # int_{-infty}^{infty} |x(t)|^2 dt = int_{-infty}^{infty} |X(f)|^2 df
+ # which has the discrete form
+ # n-1 n-1
+ # SUM |x_m|^2 dt = SUM |X'_k|^2 df
+ # m=0 k=0
+ # with X'_k = AX, this gives us
+ # n-1 n-1
+ # SUM |x_m|^2 = A^2 df/dt SUM |X'_k|^2
+ # m=0 k=0
+ # so we see
+ # A^2 df/dt = 1/n
+ # A^2 = 1/n dt/df
+ # From Numerical Recipes (http://www.fizyka.umk.pl/nrbook/bookcpdf.html),
+ # Section 12.1, we see that for a sampling rate dt, the maximum frequency
+ # f_c in the transformed data is the Nyquist frequency (12.1.2)
+ # f_c = 1/2dt
+ # and the points are spaced out by (12.1.5)
+ # df = 1/ndt
+ # so
+ # dt = 1/ndf
+ # dt/df = 1/ndf^2
+ # A^2 = 1/n^2df^2
+ # A = 1/ndf = ndt/n = dt
+ # so we can convert the Numpy transformed data to match our unitary
+ # continuous transformed data with (also NR 12.1.8)
+ # X'_k = dtX = X / <sampling freq>
+ trans = rfft(data[0:nsamps]) / float(freq)
+ freq_axis = linspace(0, freq/2, nsamps/2+1)
+ return (freq_axis, trans)
+
+def _test_unitary_rfft_parsevals():
+ print "Test unitary rfft on Parseval's theorem"
+ xs = [1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
+ dt = pi
+ freqs,Xs = unitary_rfft(xs, 1.0/dt)
+ # Which should satisfy the discretized integral form of Parseval's theorem
+ # n-1 n-1
+ # SUM |x_m|^2 dt = SUM |X_k|^2 df
+ # m=0 k=0
+ df = freqs[1]-freqs[0]
+ assert (df - 1/(len(xs)*dt))/df < 1e-6, \
+ "Mismatch in spacing, %g != 1/(%d*%g)" % (df, len(xs), dt)
+ lhs = sum([abs(x)**2 for x in xs]) * dt
+ rhs = sum([abs(X)**2 for X in Xs]) * df
+ assert abs(lhs - rhs)/lhs < 1e-6, "Mismatch on Parseval's, %g != %g" \
+ % (lhs, rhs)
+
+def _rect(t) :
+ if abs(t) < 0.5 :
+ return 1
+ else :
+ return 0
+
+def _test_unitary_rfft_rect(a=1.0, time_shift=5.0, samp_freq=25.6, samples=256) :
+ "Show fft(rect(at)) = 1/abs(a) * sinc(f/a)"
+ samp_freq = float(samp_freq)
+ a = float(a)
+
+ x = zeros((samples,), dtype=float)
+ dt = 1.0/samp_freq
+ for i in range(samples) :
+ t = i*dt
+ x[i] = _rect(a*(t-time_shift))
+ freq_axis, X = unitary_rfft(x, samp_freq)
+
+ # remove the phase due to our time shift
+ j = complex(0.0,1.0) # sqrt(-1)
+ for i in range(len(freq_axis)) :
+ f = freq_axis[i]
+ inverse_phase_shift = exp(j*2.0*pi*time_shift*f)
+ X[i] *= inverse_phase_shift
+
+ expected = zeros((len(freq_axis),), dtype=float)
+ # normalized sinc(x) = sin(pi x)/(pi x)
+ # so sinc(0.5) = sin(pi/2)/(pi/2) = 2/pi
+ assert sinc(0.5) == 2.0/pi, "abnormal sinc()"
+ for i in range(len(freq_axis)) :
+ f = freq_axis[i]
+ expected[i] = 1.0/abs(a) * sinc(f/a)
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, dt*samples, dt), x)
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, X.real, 'r.')
+ pylab.plot(freq_axis, X.imag, 'g.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('freq series')
+
+def _test_unitary_rfft_rect_suite() :
+ print "Test unitary FFTs on variously shaped rectangular functions"
+ _test_unitary_rfft_rect(a=0.5)
+ _test_unitary_rfft_rect(a=2.0)
+ _test_unitary_rfft_rect(a=0.7, samp_freq=50, samples=512)
+ _test_unitary_rfft_rect(a=3.0, samp_freq=60, samples=1024)
+
+def _gaussian(a, t) :
+ return exp(-a * t**2)
+
+def _test_unitary_rfft_gaussian(a=1.0, time_shift=5.0, samp_freq=25.6, samples=256) :
+ "Show fft(rect(at)) = 1/abs(a) * sinc(f/a)"
+ samp_freq = float(samp_freq)
+ a = float(a)
+
+ x = zeros((samples,), dtype=float)
+ dt = 1.0/samp_freq
+ for i in range(samples) :
+ t = i*dt
+ x[i] = _gaussian(a, (t-time_shift))
+ freq_axis, X = unitary_rfft(x, samp_freq)
+
+ # remove the phase due to our time shift
+ j = complex(0.0,1.0) # sqrt(-1)
+ for i in range(len(freq_axis)) :
+ f = freq_axis[i]
+ inverse_phase_shift = exp(j*2.0*pi*time_shift*f)
+ X[i] *= inverse_phase_shift
+
+ expected = zeros((len(freq_axis),), dtype=float)
+ for i in range(len(freq_axis)) :
+ f = freq_axis[i]
+ expected[i] = sqrt(pi/a) * _gaussian(1.0/a, pi*f) # see Wikipedia, or do the integral yourself.
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, dt*samples, dt), x)
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, X.real, 'r.')
+ pylab.plot(freq_axis, X.imag, 'g.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('freq series')
+
+def _test_unitary_rfft_gaussian_suite() :
+ print "Test unitary FFTs on variously shaped gaussian functions"
+ _test_unitary_rfft_gaussian(a=0.5)
+ _test_unitary_rfft_gaussian(a=2.0)
+ _test_unitary_rfft_gaussian(a=0.7, samp_freq=50, samples=512)
+ _test_unitary_rfft_gaussian(a=3.0, samp_freq=60, samples=1024)
+
+
+
+def power_spectrum(data, freq=1.0) :
+ """
+ Compute the power spectrum of DATA taken with a sampling frequency FREQ.
+ DATA must be real (not complex).
+ Returns a tuple of two arrays, (freq_axis, power), suitable for plotting.
+ If the number of samples in data is not an integer power of two,
+ the FFT ignores some of the later points.
+ """
+ nsamps = floor_pow_of_two(len(data))
+
+ freq_axis = linspace(0, freq/2, nsamps/2+1)
+ # nsamps/2+1 b/c zero-freq and nyqist-freq are both fully real.
+ # >>> help(numpy.fft.fftpack.rfft) for Numpy's explaination.
+ # See Numerical Recipies for a details.
+ trans = rfft(data[0:nsamps])
+ power = trans * trans.conj() # We want the square of the amplitude.
+ return (freq_axis, power)
+
+def unitary_power_spectrum(data, freq=1.0) :
+ freq_axis,power = power_spectrum(data, freq)
+ # One sided power spectral density, so 2|H(f)|**2 (see NR 2nd edition 12.0.14, p498)
+ #
+ # numpy normalizes with 1/N on the inverse transform ifft,
+ # so we should normalize the freq-space representation with 1/sqrt(N).
+ # But we're using the rfft, where N points are like N/2 complex points, so 1/sqrt(N/2)
+ # So the power gets normalized by that twice and we have 2/N
+ #
+ # On top of this, the FFT assumes a sampling freq of 1 per second,
+ # and we want to preserve area under our curves.
+ # If our total time T = len(data)/freq is smaller than 1,
+ # our df_real = freq/len(data) is bigger that the FFT expects (dt_fft = 1/len(data)),
+ # and we need to scale the powers down to conserve area.
+ # df_fft * F_fft(f) = df_real *F_real(f)
+ # F_real = F_fft(f) * (1/len)/(freq/len) = F_fft(f)*freq
+ # So the power gets normalized by *that* twice and we have 2/N * freq**2
+
+ # power per unit time
+ # measure x(t) for time T
+ # X(f) = int_0^T x(t) exp(-2 pi ift) dt
+ # PSD(f) = 2 |X(f)|**2 / T
+
+ # total_time = len(data)/float(freq)
+ # power *= 2.0 / float(freq)**2 / total_time
+ # power *= 2.0 / freq**2 * freq / len(data)
+ power *= 2.0 / (freq * float(len(data)))
+
+ return (freq_axis, power)
+
+def _test_unitary_power_spectrum_sin(sin_freq=10, samp_freq=512, samples=1024) :
+ x = zeros((samples,), dtype=float)
+ samp_freq = float(samp_freq)
+ for i in range(samples) :
+ x[i] = sin(2.0 * pi * (i/samp_freq) * sin_freq)
+ freq_axis, power = unitary_power_spectrum(x, samp_freq)
+ imax = argmax(power)
+
+ expected = zeros((len(freq_axis),), dtype=float)
+ df = samp_freq/float(samples) # df = 1/T, where T = total_time
+ i = int(sin_freq/df)
+ # average power per unit time is
+ # P = <x(t)**2>
+ # average value of sin(t)**2 = 0.5 (b/c sin**2+cos**2 == 1)
+ # so average value of (int sin(t)**2 dt) per unit time is 0.5
+ # P = 0.5
+ # we spread that power over a frequency bin of width df, sp
+ # P(f0) = 0.5/df
+ # where f0 is the sin's frequency
+ #
+ # or :
+ # FFT of sin(2*pi*t*f0) gives
+ # X(f) = 0.5 i (delta(f-f0) - delta(f-f0)),
+ # (area under x(t) = 0, area under X(f) = 0)
+ # so one sided power spectral density (PSD) per unit time is
+ # P(f) = 2 |X(f)|**2 / T
+ # = 2 * |0.5 delta(f-f0)|**2 / T
+ # = 0.5 * |delta(f-f0)|**2 / T
+ # but we're discrete and want the integral of the 'delta' to be 1,
+ # so 'delta'*df = 1 --> 'delta' = 1/df, and
+ # P(f) = 0.5 / (df**2 * T)
+ # = 0.5 / df (T = 1/df)
+ expected[i] = 0.5 / df
+
+ print "The power should be a peak at %g Hz of %g (%g, %g)" % \
+ (sin_freq, expected[i], freq_axis[imax], power[imax])
+ Pexp = 0
+ P = 0
+ for i in range(len(freq_axis)) :
+ Pexp += expected[i] *df
+ P += power[i] * df
+ print " The total power should be %g (%g)" % (Pexp, P)
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, samples/samp_freq, 1.0/samp_freq), x, 'b-')
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, power, 'r.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('%g samples of sin at %g Hz' % (samples, sin_freq))
+
+def _test_unitary_power_spectrum_sin_suite() :
+ print "Test unitary power spectrums on variously shaped sin functions"
+ _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=1024)
+ _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=2048)
+ _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=4098)
+ _test_unitary_power_spectrum_sin(sin_freq=7, samp_freq=512, samples=1024)
+ _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=1024, samples=2048)
+ # finally, with some irrational numbers, to check that I'm not getting lucky
+ _test_unitary_power_spectrum_sin(sin_freq=pi, samp_freq=100*exp(1), samples=1024)
+ # test with non-integer number of periods
+ _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=256)
+
+def _test_unitary_power_spectrum_delta(amp=1, samp_freq=1, samples=256) :
+ x = zeros((samples,), dtype=float)
+ samp_freq = float(samp_freq)
+ x[0] = amp
+ freq_axis, power = unitary_power_spectrum(x, samp_freq)
+
+ # power = <x(t)**2> = (amp)**2 * dt/T
+ # we spread that power over the entire freq_axis [0,fN], so
+ # P(f) = (amp)**2 dt / (T fN)
+ # where
+ # dt = 1/samp_freq (sample period)
+ # T = samples/samp_freq (total time of data aquisition)
+ # fN = 0.5 samp_freq (Nyquist frequency)
+ # so
+ # P(f) = amp**2 / (samp_freq * samples/samp_freq * 0.5 samp_freq)
+ # = 2 amp**2 / (samp_freq*samples)
+ expected_amp = 2.0 * amp**2 / (samp_freq * samples)
+ expected = ones((len(freq_axis),), dtype=float) * expected_amp
+
+ print "The power should be flat at y = %g (%g)" % (expected_amp, power[0])
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, samples/samp_freq, 1.0/samp_freq), x, 'b-')
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, power, 'r.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('%g samples of delta amp %g' % (samples, amp))
+
+def _test_unitary_power_spectrum_delta_suite() :
+ print "Test unitary power spectrums on various delta functions"
+ _test_unitary_power_spectrum_delta(amp=1, samp_freq=1.0, samples=1024)
+ _test_unitary_power_spectrum_delta(amp=1, samp_freq=1.0, samples=2048)
+ _test_unitary_power_spectrum_delta(amp=1, samp_freq=0.5, samples=2048)# expected = 2*computed
+ _test_unitary_power_spectrum_delta(amp=1, samp_freq=2.0, samples=2048)# expected = 0.5*computed
+ _test_unitary_power_spectrum_delta(amp=3, samp_freq=1.0, samples=1024)
+ _test_unitary_power_spectrum_delta(amp=pi, samp_freq=exp(1), samples=1024)
+
+def _gaussian2(area, mean, std, t) :
+ "Integral over all time = area (i.e. normalized for area=1)"
+ return area/(std*sqrt(2.0*pi)) * exp(-0.5*((t-mean)/std)**2)
+
+def _test_unitary_power_spectrum_gaussian(area=2.5, mean=5, std=1, samp_freq=10.24 ,samples=512) : #1024
+ x = zeros((samples,), dtype=float)
+ mean = float(mean)
+ for i in range(samples) :
+ t = i/float(samp_freq)
+ x[i] = _gaussian2(area, mean, std, t)
+ freq_axis, power = unitary_power_spectrum(x, samp_freq)
+
+ # generate the predicted curve
+ # by comparing our _gaussian2() form to _gaussian(),
+ # we see that the Fourier transform of x(t) has parameters:
+ # std' = 1/(2 pi std) (references declaring std' = 1/std are converting to angular frequency, not frequency like we are)
+ # area' = area/[std sqrt(2*pi)] (plugging into FT of _gaussian() above)
+ # mean' = 0 (changing the mean in the time-domain just changes the phase in the freq-domain)
+ # So our power spectral density per unit time is given by
+ # P(f) = 2 |X(f)|**2 / T
+ # Where
+ # T = samples/samp_freq (total time of data aquisition)
+ mean = 0.0
+ area = area /(std*sqrt(2.0*pi))
+ std = 1.0/(2.0*pi*std)
+ expected = zeros((len(freq_axis),), dtype=float)
+ df = float(samp_freq)/samples # 1/total_time ( = freq_axis[1]-freq_axis[0] = freq_axis[1])
+ for i in range(len(freq_axis)) :
+ f = i*df
+ gaus = _gaussian2(area, mean, std, f)
+ expected[i] = 2.0 * gaus**2 * samp_freq/samples
+ print "The power should be a half-gaussian, ",
+ print "with a peak at 0 Hz with amplitude %g (%g)" % (expected[0], power[0])
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, samples/samp_freq, 1.0/samp_freq), x, 'b-')
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, power, 'r.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('freq series')
+
+def _test_unitary_power_spectrum_gaussian_suite() :
+ print "Test unitary power spectrums on various gaussian functions"
+ _test_unitary_power_spectrum_gaussian(area=1, std=1, samp_freq=10.0, samples=1024)
+ _test_unitary_power_spectrum_gaussian(area=1, std=2, samp_freq=10.0, samples=1024)
+ _test_unitary_power_spectrum_gaussian(area=1, std=1, samp_freq=10.0, samples=2048)
+ _test_unitary_power_spectrum_gaussian(area=1, std=1, samp_freq=20.0, samples=2048)
+ _test_unitary_power_spectrum_gaussian(area=3, std=1, samp_freq=10.0, samples=1024)
+ _test_unitary_power_spectrum_gaussian(area=pi, std=sqrt(2), samp_freq=exp(1), samples=1024)
+
+def window_hann(length) :
+ "Returns a Hann window array with length entries"
+ win = zeros((length,), dtype=float)
+ for i in range(length) :
+ win[i] = 0.5*(1.0-cos(2.0*pi*float(i)/(length)))
+ # avg value of cos over a period is 0
+ # so average height of Hann window is 0.5
+ return win
+
+def avg_power_spectrum(data, freq=1.0, chunk_size=2048,
+ overlap=True, window=window_hann) :
+ """
+ Compute the avg power spectrum of DATA taken with a sampling frequency FREQ.
+ DATA must be real (not complex) by breaking DATA into chunks.
+ The chunks may or may not be overlapping (by setting OVERLAP).
+ The chunks are windowed by dotting with WINDOW(CHUNK_SIZE), FFTed,
+ and the resulting spectra are averaged together.
+ See NR 13.4 for rational.
+
+ Returns a tuple of two arrays, (freq_axis, power), suitable for plotting.
+ CHUNK_SIZE should really be a power of 2.
+ If the number of samples in DATA is not an integer power of CHUNK_SIZE,
+ the FFT ignores some of the later points.
+ """
+ assert chunk_size == floor_pow_of_two(chunk_size), \
+ "chunk_size %d should be a power of 2" % chunk_size
+
+ nchunks = len(data)/chunk_size # integer division = implicit floor
+ if overlap :
+ chunk_step = chunk_size/2
+ else :
+ chunk_step = chunk_size
+
+ win = window(chunk_size) # generate a window of the appropriate size
+ freq_axis = linspace(0, freq/2, chunk_size/2+1)
+ # nsamps/2+1 b/c zero-freq and nyqist-freq are both fully real.
+ # >>> help(numpy.fft.fftpack.rfft) for Numpy's explaination.
+ # See Numerical Recipies for a details.
+ power = zeros((chunk_size/2+1,), dtype=float)
+ for i in range(nchunks) :
+ starti = i*chunk_step
+ stopi = starti+chunk_size
+ fft_chunk = rfft(data[starti:stopi]*win)
+ p_chunk = fft_chunk * fft_chunk.conj()
+ power += p_chunk.astype(float)
+ power /= float(nchunks)
+ return (freq_axis, power)
+
+def unitary_avg_power_spectrum(data, freq=1.0, chunk_size=2048,
+ overlap=True, window=window_hann) :
+ """
+ compute the average power spectrum, preserving normalization
+ """
+ freq_axis,power = avg_power_spectrum(data, freq, chunk_size,
+ overlap, window)
+ # 2.0 / (freq * chunk_size) |rfft()|**2 --> unitary_power_spectrum
+ power *= 2.0 / (freq*float(chunk_size)) * 8/3 # see unitary_power_spectrum()
+ # * 8/3 to remove power from windowing
+ # <[x(t)*w(t)]**2> = <x(t)**2 * w(t)**2> ~= <x(t)**2> * <w(t)**2>
+ # where the ~= is because the frequency of x(t) >> the frequency of w(t).
+ # So our calulated power has and extra <w(t)**2> in it.
+ # For the Hann window, <w(t)**2> = <0.5(1 + 2cos + cos**2)> = 1/4 + 0 + 1/8 = 3/8
+ # For low frequency components, where the frequency of x(t) is ~= the frequency of w(t),
+ # The normalization is not perfect. ??
+ # The normalization approaches perfection as chunk_size -> infinity.
+ return (freq_axis, power)
+
+def _test_unitary_avg_power_spectrum_sin(sin_freq=10, samp_freq=512, samples=1024,
+ chunk_size=512, overlap=True,
+ window=window_hann) :
+ x = zeros((samples,), dtype=float)
+ samp_freq = float(samp_freq)
+ for i in range(samples) :
+ x[i] = sin(2.0 * pi * (i/samp_freq) * sin_freq)
+ freq_axis, power = unitary_avg_power_spectrum(x, samp_freq, chunk_size,
+ overlap, window)
+ imax = argmax(power)
+
+ expected = zeros((len(freq_axis),), dtype=float)
+ df = samp_freq/float(chunk_size) # df = 1/T, where T = total_time
+ i = int(sin_freq/df)
+ expected[i] = 0.5 / df # see _test_unitary_power_spectrum_sin()
+
+ print "The power should be a peak at %g Hz of %g (%g, %g)" % \
+ (sin_freq, expected[i], freq_axis[imax], power[imax])
+ Pexp = 0
+ P = 0
+ for i in range(len(freq_axis)) :
+ Pexp += expected[i] * df
+ P += power[i] * df
+ print " The total power should be %g (%g)" % (Pexp, P)
+
+ if TEST_PLOTS :
+ pylab.figure()
+ pylab.subplot(211)
+ pylab.plot(arange(0, samples/samp_freq, 1.0/samp_freq), x, 'b-')
+ pylab.title('time series')
+ pylab.subplot(212)
+ pylab.plot(freq_axis, power, 'r.')
+ pylab.plot(freq_axis, expected, 'b-')
+ pylab.title('%g samples of sin at %g Hz' % (samples, sin_freq))
+
+def _test_unitary_avg_power_spectrum_sin_suite() :
+ print "Test unitary avg power spectrums on variously shaped sin functions"
+ _test_unitary_avg_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=1024)
+ _test_unitary_avg_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=2048)
+ _test_unitary_avg_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=4098)
+ _test_unitary_avg_power_spectrum_sin(sin_freq=17, samp_freq=512, samples=1024)
+ _test_unitary_avg_power_spectrum_sin(sin_freq=5, samp_freq=1024, samples=2048)
+ # test long wavelenth sin, so be closer to window frequency
+ _test_unitary_avg_power_spectrum_sin(sin_freq=1, samp_freq=1024, samples=2048)
+ # finally, with some irrational numbers, to check that I'm not getting lucky
+ _test_unitary_avg_power_spectrum_sin(sin_freq=pi, samp_freq=100*exp(1), samples=1024)
+
+
+def test() :
+ _test_rfft_suite()
+ _test_unitary_rfft_parsevals()
+ _test_unitary_rfft_rect_suite()
+ _test_unitary_rfft_gaussian_suite()
+ _test_unitary_power_spectrum_sin_suite()
+ _test_unitary_power_spectrum_delta_suite()
+ _test_unitary_power_spectrum_gaussian_suite()
+ _test_unitary_avg_power_spectrum_sin_suite()
+
+if __name__ == "__main__" :
+ if TEST_PLOTS :
+ import pylab
+ test()
+ if TEST_PLOTS :
+ pylab.show()