For example, on a recent calibration run\footnote{2013-02-07T08-20-46}
I measured $\sigma_p=35.68\pm0.87\U{V/$\mu$m}$,
$T=298.151\pm0.033\U{K}$, and $\avg{V_p^2}=96.90\pm0.99\U{mV$^2$}$,
-which gives $\kappa=54.1\pm2.7\U{mN/m}$. The uncertainty
-contributions from each term are
+which gives $\kappa=54.1\pm2.7\U{mN/m}$. These numbers are very
+similar to those obtained with a different cantilever from the same
+batch measured a month later (\cref{tab:calibcant:stability}). The
+uncertainty contributions from each term are
\begin{align}
4\p({\frac{\sigma_{\sigma_p}}{\sigma_p}})^2 &= 2.38\E{-3}\U{N$^2$/m$^2$} \\
\p({\frac{\sigma_{T}}{T}})^2 &= 1.29\E{-8}\U{N$^2$/m$^2$} \\
\end{center}
\end{figure}
+\begin{table}
+ \begin{center}
+ \begin{tabular}{c c r l r l}
+ \toprule
+ \multicolumn{2}{c}{Timestamp:} &
+ \multicolumn{2}{c}{2013-03-03T16-37-12} &
+ \multicolumn{2}{c}{2013-03-04T12-21-54} \\
+ \midrule
+ Quantity & Units & Mean & Std.~Dev. & Mean & Std.~Dev. \\
+ \midrule
+ $\sigma_p$ & \bareU{V/$\mu$m} & 46.22 & 0.76 & 41.30 & 0.21 \\
+ $T$ & \bareU{K} & 296.302 & 0.021 & 294.272 & 0.022 \\
+ $\avg{V_p^2}$ & \bareU{mV$^2$} & 108.3 & 1.1 & 105.5 & 2.16 \\
+ $\kappa$ & \bareU{mN/m} & 67.3 & 2.5 & 65.6 & 1.5 \\
+ \bottomrule
+ \end{tabular}
+ \caption{Measured spring constant calibration parameters (mean and
+ standard deviation) for a single cantilever on two consecutive
+ days. The measured parameters have changes slightly because the
+ laser alignment and buffer temperature drift over time, but the
+ measured $\kappa$ are not significantly different ($p=0.9$, as
+ measured with a two-tailed Welch's
+ $t$-test\citep{welch38,welch47}).\label{tab:calibcant:stability}}
+ % Using Welch's t test
+ % http://en.wikipedia.org/wiki/Welch%27s_t_test
+ % from math import sqrt # using Python in the following
+ % x1 = 67.3
+ % v1 = 2.5**2
+ % n1 = 10 # sortof :p
+ % x2 = 65.6
+ % v2 = 1.5**2
+ % n2 = 10
+ % t = (x1 - x2) / sqrt(v1/n1 + v2/n2)
+ % = 1.8
+ % Degrees of freedom with the Welch-Satterthwaithe equation
+ % df = (v1/n1 + v2/n2)**2 / ( (v1/n1)**2/(n1-1) + (v2/n2)**2/(n2-1) )
+ % Test null hypothesis that means are equal (two-tailed t)
+ % http://en.wikipedia.org/wiki/Two-tailed_test
+ % from scipy.stats.mstats import betai
+ % p = betai(0.5*df, 0.5, float(df) / (df + t*t))
+ % = 0.09
+ % With arrays, we could have used scipy.stats.mstats.ttest_ind().
+ \end{center}
+\end{table}
+
\subsection{Archiving experimental data}
\label{sec:calibcant:discussion:data}
@string{Biochem = "Biochemistry"}
@string{BBABE = "Biochimica et Biophysica Acta (BBA) - Bioenergetics"}
@string{BIOINFO = "Bioinformatics (Oxford, England)"}
+@string{Biomet = "Biometrika"}
@string{BPJ = "Biophysical Journal"}
%string{BPJ = "Biophys. J."}
@string{BIOSENSE = "Biosensors and Bioelectronics"}
@string{YWei = "Wei, Yen"}
@string{ALWeisenhorn = "Weisenhorn, A.~L."}
@string{JWeissenbach = "Weissenbach, J."}
+@string{BLWelch = "Welch, Bernard Lewis"}
@string{GWen = "Wen, G."}
@string{MWen = "Wen, M."}
@string{JWetter = "Wetter, J."}
jstor_issuetitle = ""
}
+@article{ welch38,
+ author = BLWelch,
+ title = {The significance of the difference between two means when
+ the population variances are unequal},
+ year = 1938,
+ month = feb,
+ journal = Biomet,
+ volume = 29,
+ number = "3-4",
+ pages = {350--362},
+ keywords = "Population",
+ issn = "0006-3444",
+ url = "http://www.jstor.org/stable/2332010",
+ language = "eng",
+}
+
+@article{ welch47,
+ author = BLWelch,
+ title = {The generalization of {Student's} problems when several
+ different population variances are involved},
+ year = 1947,
+ month = jan,
+ journal = Biomet,
+ volume = 34,
+ number = "1-2",
+ pages = {28--35},
+ keywords = "Population",
+ issn = "0006-3444",
+ url = "http://www.ncbi.nlm.nih.gov/pubmed/20287819",
+ jstor_url = "http://www.jstor.org/stable/2332510",
+ language = "eng",
+}
+
@article { granzier97,
author = HLGranzier #" and "# MSKellermayer #" and "# MHelmes #" and "#
KTrombitas,