the gravitational force $F_g=mg$. Because the current and magnetic
field are perpendicular to each other, we can focus on the magnitudes
\begin{align}
- F_B &= IlB = F_g = mg \
+ F_B &= IlB = F_g = mg \\
I &= \frac{mg}{lB}
- = \frac{0.750\U{kg}\cdot9.8\U{m/s}}{0.500\U{m}\cdot0.450\U{T}}
+ = \frac{0.750\U{kg}\cdot9.8\U{m/s$^2$}}{0.500\U{m}\cdot0.450\U{T}}
= 32.7\U{A} \;.
\end{align}
-This maximum current would when the voltage $V$ from the battery
+This maximum current would occur when the voltage $V$ from the battery
balanced an $IR$ drop across the resistor, so
\begin{equation}
- V = IR = \ans{817\U{V}} \;.
+ V = IR = 32.7\U{A}\cdot25.0\U{\Ohm} = \ans{817\U{V}} \;.
\end{equation}
\Part{b}
When the resistor shorts, the current jumps to
\begin{equation}
- I' = \frac{V}{R'} = 408\U{A} \;,
+ I' = \frac{V}{R'} \;,
\end{equation}
because the resistor voltage still has to match the battery voltage.
This creates a net lifting force and acceleration on the bar.
\begin{align}
- F &= F_B-F_g = I'lB - mg = I'lB - IlB = (I'-I)lB = ma \\
- a &= (I'-I)\frac{lB}{m}
- = 376\U{A}\cdot\frac{0.500\U{m}\cdot0.450\U{T}}{0.750\U{kg}}
+ F &= F_B-F_g = I'lB - mg = \frac{VlB}{R'} - mg = ma \\
+ a &= \frac{VlB}{R'm} - g
+ = \frac{817\U{V}\cdot0.500\U{m}\cdot0.450\U{T}}
+ {2.00\U{\Ohm}\cdot0.750\U{kg}} - 9.8\U{m/s$^2$}
= \ans{113\U{m/s$^2$}} \;.
\end{align}
\end{solution}
\end{align}
Matching components and writing $v_z=v$ we have
\begin{align}
- -qvB_y &= 3F_0 & qvB_x &= 4F_0 \\
- B_y &= \ans{\frac{-3F_0}{qv}} & B_x &= \ans{\frac{4F_0}{qv}} \;.
+ -qvB_y &= 3F_0 & qvB_x &= 4F_0 \\
+ B_y &= \ans{\frac{-3F_0}{qv}} < 0 & B_x &= \ans{\frac{4F_0}{qv}} > 0 \;.
\end{align}
We can't find $B_z$ because it does not contribute to the force felt
by the charge, which is currently our only handle on \vect{B}.
\begin{align}
|\vect{B}|^2 &= B_x^2 + B_y^2 + B_z^2 \\
B_z^2 &= |\vect{B}^2| - B_x^2 - B_y^2
- = 36\frac{F_0^2}{q^2v^2} - 9\frac{F_0^2}{q^2v^2} - 16\frac{F_0^2}{q^2v^2}
- = (36-9-16)\frac{F_0^2}{q^2v^2}
+ = 36\frac{F_0^2}{q^2v^2} - 16\frac{F_0^2}{q^2v^2} - 9\frac{F_0^2}{q^2v^2}
+ = (36-16-9)\frac{F_0^2}{q^2v^2}
= 11\frac{F_0^2}{q^2v^2} \\
- B_z &= \ans{\sqrt{11}\frac{F_0}{qv}} \;.
+ B_z &= \ans{\pm\sqrt{11}\frac{F_0}{qv}} \;.
\end{align}
However, we still cannot find the direction of $B_z$.
\end{solution}