FFT_tools: remove redundant class names from TestCase methods
authorW. Trevor King <wking@tremily.us>
Mon, 19 Nov 2012 06:21:36 +0000 (01:21 -0500)
committerW. Trevor King <wking@tremily.us>
Mon, 19 Nov 2012 06:21:36 +0000 (01:21 -0500)
FFT_tools.py

index 933e064b884e9ea965218c8519427aac0dba44ae..51a2fea5d2bb50583ac38a9e9af316d8cf350284 100644 (file)
@@ -383,7 +383,7 @@ class TestRFFT (_unittest.TestCase):
 class TestUnitaryRFFT (_unittest.TestCase):
     """Verify `unitary_rfft`.
     """
-    def run_unitary_rfft_parsevals(self, xs, freq, freqs, Xs):
+    def run_parsevals(self, xs, freq, freqs, Xs):
         """Check the discretized integral form of Parseval's theorem
 
         Notes
@@ -409,12 +409,12 @@ class TestUnitaryRFFT (_unittest.TestCase):
             raise ValueError(
                 "Mismatch on Parseval's, {} != {}".format(lhs, rhs))
 
-    def test_unitary_rfft_parsevals(self):
+    def test_parsevals(self):
         "Test unitary rfft on Parseval's theorem"
         xs = [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]
         dt = _numpy.pi
         freqs,Xs = unitary_rfft(xs, 1.0 / dt)
-        self.run_unitary_rfft_parsevals(xs, 1.0 / dt, freqs, Xs)
+        self.run_parsevals(xs, 1.0 / dt, freqs, Xs)
 
     def rect(self, t):
         r"""Rectangle function.
@@ -434,8 +434,7 @@ class TestUnitaryRFFT (_unittest.TestCase):
         else:
             return 0
 
-    def run_unitary_rfft_rect(self, a=1.0, time_shift=5.0, samp_freq=25.6,
-                              samples=256):
+    def run_rect(self, a=1.0, time_shift=5.0, samp_freq=25.6, samples=256):
         r"""Test `unitary_rttf` on known function `rect(at)`.
 
         Notes
@@ -482,12 +481,12 @@ class TestUnitaryRFFT (_unittest.TestCase):
             freq_axes.plot(freq_axis, expected, 'b-')
             freq_axes.set_title('freq series')
 
-    def test_unitary_rfft_rect(self):
+    def test_rect(self):
         "Test unitary FFTs on variously shaped rectangular functions."
-        self.run_unitary_rfft_rect(a=0.5)
-        self.run_unitary_rfft_rect(a=2.0)
-        self.run_unitary_rfft_rect(a=0.7, samp_freq=50, samples=512)
-        self.run_unitary_rfft_rect(a=3.0, samp_freq=60, samples=1024)
+        self.run_rect(a=0.5)
+        self.run_rect(a=2.0)
+        self.run_rect(a=0.7, samp_freq=50, samples=512)
+        self.run_rect(a=3.0, samp_freq=60, samples=1024)
 
     def gaussian(self, a, t):
         r"""Gaussian function.
@@ -499,8 +498,7 @@ class TestUnitaryRFFT (_unittest.TestCase):
         """
         return _numpy.exp(-a * t**2)
 
-    def run_unitary_rfft_gaussian(self, a=1.0, time_shift=5.0, samp_freq=25.6,
-                                  samples=256):
+    def run_gaussian(self, a=1.0, time_shift=5.0, samp_freq=25.6, samples=256):
         r"""Test `unitary_rttf` on known function `gaussian(a,t)`.
 
         Notes
@@ -547,17 +545,16 @@ class TestUnitaryRFFT (_unittest.TestCase):
             freq_axes.plot(freq_axis, expected, 'b-')
             freq_axes.set_title('freq series')
 
-    def test_unitary_rfft_gaussian(self):
+    def test_gaussian(self):
         "Test unitary FFTs on variously shaped gaussian functions."
-        self.run_unitary_rfft_gaussian(a=0.5)
-        self.run_unitary_rfft_gaussian(a=2.0)
-        self.run_unitary_rfft_gaussian(a=0.7, samp_freq=50, samples=512)
-        self.run_unitary_rfft_gaussian(a=3.0, samp_freq=60, samples=1024)
+        self.run_gaussian(a=0.5)
+        self.run_gaussian(a=2.0)
+        self.run_gaussian(a=0.7, samp_freq=50, samples=512)
+        self.run_gaussian(a=3.0, samp_freq=60, samples=1024)
 
 
 class TestUnitaryPowerSpectrum (_unittest.TestCase):
-    def run_unitary_power_spectrum_sin(self, sin_freq=10, samp_freq=512,
-                                       samples=1024):
+    def run_sin(self, sin_freq=10, samp_freq=512, samples=1024):
         x = _numpy.zeros((samples,), dtype=_numpy.float)
         samp_freq = _numpy.float(samp_freq)
         for i in range(samples):
@@ -612,29 +609,21 @@ class TestUnitaryPowerSpectrum (_unittest.TestCase):
             freq_axes.set_title(
                 '{} samples of sin at {} Hz'.format(samples, sin_freq))
 
-
-    def test_unitary_power_spectrum_sin(self):
+    def test_sin(self):
         "Test unitary power spectrums on variously shaped sin functions"
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=1024)
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=2048)
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=4098)
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=7, samp_freq=512, samples=1024)
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=5, samp_freq=1024, samples=2048)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=1024)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=2048)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=4098)
+        self.run_sin(sin_freq=7, samp_freq=512, samples=1024)
+        self.run_sin(sin_freq=5, samp_freq=1024, samples=2048)
         # finally, with some irrational numbers, to check that I'm not
         # getting lucky
-        self.run_unitary_power_spectrum_sin(
+        self.run_sin(
             sin_freq=_numpy.pi, samp_freq=100 * _numpy.exp(1), samples=1024)
         # test with non-integer number of periods
-        self.run_unitary_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=256)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=256)
 
-    def run_unitary_power_spectrum_delta(self, amp=1, samp_freq=1,
-                                         samples=256):
+    def run_delta(self, amp=1, samp_freq=1, samples=256):
         """TODO
         """
         x = _numpy.zeros((samples,), dtype=_numpy.float)
@@ -670,30 +659,24 @@ class TestUnitaryPowerSpectrum (_unittest.TestCase):
             freq_axes.plot(freq_axis, expected, 'b-')
             freq_axes.set_title('{} samples of delta amp {}'.format(samples, amp))
 
-    def test_unitary_power_spectrum_delta(self):
+    def test_delta(self):
         "Test unitary power spectrums on various delta functions"
-        self.run_unitary_power_spectrum_delta(
-            amp=1, samp_freq=1.0, samples=1024)
-        self.run_unitary_power_spectrum_delta(
-            amp=1, samp_freq=1.0, samples=2048)
+        self.run_delta(amp=1, samp_freq=1.0, samples=1024)
+        self.run_delta(amp=1, samp_freq=1.0, samples=2048)
         # expected = 2*computed
-        self.run_unitary_power_spectrum_delta(
-            amp=1, samp_freq=0.5, samples=2048)
+        self.run_delta(amp=1, samp_freq=0.5, samples=2048)
         # expected = 0.5*computed
-        self.run_unitary_power_spectrum_delta(
-            amp=1, samp_freq=2.0, samples=2048)
-        self.run_unitary_power_spectrum_delta(
-            amp=3, samp_freq=1.0, samples=1024)
-        self.run_unitary_power_spectrum_delta(
-            amp=_numpy.pi, samp_freq=_numpy.exp(1), samples=1024)
+        self.run_delta(amp=1, samp_freq=2.0, samples=2048)
+        self.run_delta(amp=3, samp_freq=1.0, samples=1024)
+        self.run_delta(amp=_numpy.pi, samp_freq=_numpy.exp(1), samples=1024)
 
     def gaussian(self, area, mean, std, t):
         "Integral over all time = area (i.e. normalized for area=1)"
         return area / (std * _numpy.sqrt(2.0 * _numpy.pi)) * _numpy.exp(
             -0.5 * ((t-mean)/std)**2)
 
-    def run_unitary_power_spectrum_gaussian(self, area=2.5, mean=5, std=1,
-                                            samp_freq=10.24 ,samples=512):
+    def run_gaussian(self, area=2.5, mean=5, std=1, samp_freq=10.24,
+                     samples=512):
         """TODO.
         """
         x = _numpy.zeros((samples,), dtype=_numpy.float)
@@ -744,21 +727,20 @@ class TestUnitaryPowerSpectrum (_unittest.TestCase):
             freq_axes.plot(freq_axis, expected, 'b-')
             freq_axes.set_title('freq series')
 
-    def test_unitary_power_spectrum_gaussian(self):
+    def test_gaussian(self):
         "Test unitary power spectrums on various gaussian functions"
         for area in [1, _numpy.pi]:
             for std in [1, _numpy.sqrt(2)]:
                 for samp_freq in [10.0, _numpy.exp(1)]:
                     for samples in [1024, 2048]:
-                        self.run_unitary_power_spectrum_gaussian(
+                        self.run_gaussian(
                             area=area, std=std, samp_freq=samp_freq,
                             samples=samples)
 
 
 class TestUnitaryAvgPowerSpectrum (_unittest.TestCase):
-    def run_unitary_avg_power_spectrum_sin(self, sin_freq=10, samp_freq=512,
-                                           samples=1024, chunk_size=512,
-                                           overlap=True, window=window_hann):
+    def run_sin(self, sin_freq=10, samp_freq=512, samples=1024, chunk_size=512,
+                overlap=True, window=window_hann):
         """TODO
         """
         x = _numpy.zeros((samples,), dtype=_numpy.float)
@@ -797,22 +779,16 @@ class TestUnitaryAvgPowerSpectrum (_unittest.TestCase):
             freq_axes.set_title(
                 '{} samples of sin at {} Hz'.format(samples, sin_freq))
 
-    def test_unitary_avg_power_spectrum_sin(self):
+    def test_sin(self):
         "Test unitary avg power spectrums on variously shaped sin functions."
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=1024)
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=2048)
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=5, samp_freq=512, samples=4098)
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=17, samp_freq=512, samples=1024)
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=5, samp_freq=1024, samples=2048)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=1024)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=2048)
+        self.run_sin(sin_freq=5, samp_freq=512, samples=4098)
+        self.run_sin(sin_freq=17, samp_freq=512, samples=1024)
+        self.run_sin(sin_freq=5, samp_freq=1024, samples=2048)
         # test long wavelenth sin, so be closer to window frequency
-        self.run_unitary_avg_power_spectrum_sin(
-            sin_freq=1, samp_freq=1024, samples=2048)
+        self.run_sin(sin_freq=1, samp_freq=1024, samples=2048)
         # finally, with some irrational numbers, to check that I'm not
         # getting lucky
-        self.run_unitary_avg_power_spectrum_sin(
+        self.run_sin(
             sin_freq=_numpy.pi, samp_freq=100 * _numpy.exp(1), samples=1024)