Fix subscripting (r_12 -> r_{12}) in Serway and Jewett v8's 25.21.
[course.git] / latex / problems / Serway_and_Jewett_4_wking / problem13.12.T.tex
1 \begin{problem}
2 Show that the all functions of the form $y(x,t) = f(x \pm vt)$ for any
3 function $f(z)$ satisfy the linear wave equation (Equation 13.19)
4 \begin{equation}
5   \npderiv{2}{x}{y} = \frac{1}{v^2}\npderiv{2}{t}{y}\;.
6 \end{equation}
7 \end{problem} % generalized form of Problem 13.12
8
9 \begin{solution}
10 Taking the partial derivatives with respect to space
11 \begin{align}
12   \pderiv{x}{y} &= \pderiv{z}{f} \cdot \pderiv{x}{z}
13                  = \pderiv{z}{f} \cdot \pderiv{x}{}\p({x \pm vt})
14                  = \pderiv{z}{f} \\
15   \npderiv{2}{x}{y} &= \pderiv{x}{}\p({\pderiv{z}{f}})
16                  = \npderiv{2}{z}{f} \cdot \pderiv{x}{z}
17                  = \npderiv{2}{z}{f} \cdot \pderiv{x}{}\p({x \pm vt})
18                  = \npderiv{2}{z}{f}\;,
19 \end{align}
20 where we have used the chain rule
21 \begin{equation}
22   \pderiv{x}{}\p({f(z(x))}) = \pderiv{z}{f}\cdot\pderiv{x}{z}
23 \end{equation}
24 with $z(x) = x \pm vt$.
25
26 Taking the partial derivitives with respect to time
27 \begin{align}
28   \pderiv{t}{y} &= \pderiv{z}{f} \cdot \pderiv{t}{z}
29                  = \pderiv{z}{f} \cdot \pderiv{t}{}\p({x \pm vt})
30                  = \pm v \pderiv{z}{f} \\
31   \npderiv{2}{t}{y} &= \pderiv{t}{}\p({\pm v \pderiv{z}{f}})
32                  = \pm v \npderiv{2}{z}{f} \cdot \pderiv{t}{z}
33                  = \pm v \npderiv{2}{z}{f} \cdot \pderiv{t}{}\p({x \pm vt})
34                  = (\pm v)^2 \npderiv{2}{z}{f}
35                  = v^2 \npderiv{2}{z}{f}\;.
36 \end{align}
37 So
38 \begin{equation}
39   \npderiv{2}{x}{y} = \npderiv{2}{z}{f} = \frac{1}{v^2}\npderiv{2}{t}{y}
40 \end{equation}
41 which is what we set out to show.
42 \end{solution}