Merge remote branch 'public/master'
[course.git] / latex / problems / Serway_and_Jewett_4 / problem20.03.tex
1 \begin{problem*}{20.3}
2 A uniform electric field of magnitude $E = 250\U{V/m}$ is directed in
3 the positive $x$ direction (\ihat).  A $q = +12.0\U{$\mu$C}$ charge
4 moves from the origin to the point $(x,y) = (20.0\U{cm}, 50.0\U{cm})$.
5 \Part{a} What is the change in the potential energy $\Delta U$ of the
6 charge-field system?
7 \Part{b} Through what potential difference $\Delta V$ does the charge move?
8 \end{problem*} % problem 20.3
9
10 \begin{solution}
11 \Part{a}
12 From the text Equation 20.1 (page 643) we see
13 \begin{equation}
14  \Delta U = -q \int_A^B \vect{E} \cdot d\vect{s}
15           = -q \int_A^B E\ihat \cdot d\vect{s}
16           = -q E \int_{x_1}^{x_2} dx
17           = -q E \Delta x
18 \end{equation}
19 Which is the same process the book used to get to their Equation 20.9.
20 Plugging in our numbers
21 \begin{equation}
22  \Delta U = -12.0\E{-6}\U{C} \cdot 250\U{V/m} \cdot 0.200\U{m}
23           = \ans{-6.00\E{-4}\U{J}}
24 \end{equation}
25
26 \Part{b}
27 The change in electric potential is given by
28 \begin{equation}
29  \Delta V = \frac{\Delta U}{q} = \ans{-50.0\U{V}}
30 \end{equation}
31 \end{solution}